

Version Control with Git

Linux Users Group
UT Arlington

Rohit Rawat
rohitrawat@gmail.com

Need for Version Control

 Better than manually storing backups of older
versions

 Easier to keep everyone updated on a large
project

 Allows concurrent development by multiple
developers and safely merges those chages

 Accountability for all changes
 Fine tuned access control

Version Control Systems

 CVS, SVN, Git, Mercurial, propreitary tools
 Git

 Created by Linus Trovalds
 Distributed vs centralized model of CVS and SVN
 http://git-svn.com
 Free and open source
 Cross platform

http://git-svn.com/

Distributed VCS

 Each user has a copy of the whole repository,
i.e. all the code and all the revisions.

 Advantages:
 Safer due to redundancy
 Fast access, can also work offline
 No central server required
 Less hesitation in making commits

 Disadvantages:
 Commits are local/delayed
 First time download is slow

Is Git hard to set up?

 Single user
 Very simple to use on your local macine.

 Multiple developers
 Easiest with an online service that sets it up for you:

 SourceForge, Google Code, GitHub – best free
hosting, but ONLY for open source project

 Not many free options for closed source –
Assembla, ProjectLocker

 Not that hard to get your own server running
 One of the developer machines can also act as

the server.

VCS Terminology

 Repository – a location where all your code
revisions and hsitory is stored

 Commit – 1. v. The act of recording your
changes into the repository. 2. n. A snapshot of
your code created during a commit

 Branch – A sequence of commits leading to a
particular code state.

 Multiple branches lead to different versions of code
 Convention is to have a ”master” branch for your

stable code, separate branches for development
work

Repositories and branches

Image source: [1] http://sitaramc.github.com/gcs/

More terminology

 Working copy – the code present on your
machine, with changes that may or may not
have been committed

 Unversioned files – Files which are not put
under version control, like temporary files,
binaries.

Using Git

 Linux – install git package
 Windows – install msysgit
 Graphical tools are also available – GitGUI,

TortoiseGit

 Configure git for first time use:
git config --global user.name "Rohit"
git config --global user.email "rohit.rawat@mavs.uta.edu"
git config --global core.editor vi

 Your username and email are logged with each commit.

mailto:rohit.rawat@mavs.uta.edu

Initialize Git repository

 Git repositories reside with the code
Project_folder/

code1.cpp, code2.cpp, subfolders, '.git' folder
 Initialize git repository, creates '.git' folder:

git init
 Check status of the repository:

git status

Add files to version control

 You need to select which files are to be kept
under git

git add *.cpp
git status

 Files are added to a staging area. They have
not been comitted yet and no permanent
changes have been made to the repository.

 Make the first commit
git commit -m ”First import of code into Git!”
git status

Making changes

 Modify a file, then check git status. It should tell
you the file has been modified, but not staged.

 If you change multiple files, git does not
assume you want to record all those changes in
the next commit.

 You have to manually add the changed files to
the staging area with git add.

 Or you can commit with the -a option:
git commit -a -m ”Second commit!”

Comparing versions

 Git lets you compare commits with other
commits or your working copy (w.c.).

 Compares the last commmit with w.c.:
git diff

 HEAD is a label pointing to the the commit
responsible for the w.c. To compare w.c. with
the version 1 commit behind HEAD:

git diff HEAD~1
 If you manually staged files for commit with git

add, they don't show up in the diff without the
--cached switch.

Creating a branch

 Do you need a branch if you are the sole
developer?

 If you are working on more than one feature at the
same time, you should do that on separate
branches.

 If you are experimenting with stuff that you are not
sure you want to keep, do it on a branch – the
master branch will stay clean.

 Since there are no conflicts with other developers,
merging witll be fast and easy.

Creating a branch

 Create a branch:
git branch branch_name

 List the active branch:
git branch

 The active branch will have an *.
 Switch to the new branch:

git checkout branch_name
 Shortcut: git checkout -b branch_name
 All further commits go on the active branch.

Make changes and commit them to the branch

Creating a branch

 Create a branch:
git branch branch_name

 List the active branch:
git branch

 The active branch will have an *.
 Switch to the new branch:

git checkout branch_name
 Shortcut: git checkout -b branch_name
 All further commits go on the active branch.

Merge a branch back into master

 Switch to the master branch
git checkout master

 Merge the branch branch_name
git merge branch_name

 If there are any conflicts during the merge, git
highlights them in the file using markers ”>>>”.
You can manually open the files and fix the
conflicts.

 You can delete the branch to keep things clean
git branch -d branch_name

Remote repositories

 Create a free account on Github
 Follow instructions to create a new repository
 Follow instructions to push an existing

repository from the command line:
git remote add origin https://github.com/rohitrawat/Demo22.git
git push -u origin master

Remote repositories

 A remote is like an alias for a remote copy of
the repository.

 Multiple remotes may be added.
 In this case, we added a remote at Github,

which was empty.
 When we pushed out changes, the remote repo

got updated with our code.

Add a second developer

 The new developer also creates a Github
account, and configures his git installation with
the correct email address.

 The original developer logs into Github and
adds him under Admin->Collaborators

 The new developer clones the repository:
git clone https://url/of/the/repository

 Clone automatically initializes a new local repo,
adds the url as the 'origin', and pulls the code.

 You may save your public key to your github
account to avoid autheticating every time.

https://url/of/the/repository

Back and forth

 Users may now commit changes to their local
repositories.

vi code.cpp
git commit -a

 To sync, they would first 'push' their commits to
the remote.

git push origin master
 The other user would then 'pull' from the

remote.
git pull origin master

Git fetch and pull

 Git fetch downloads the latest copy of the
remote repository to your machine, but does not
affect any code sitting on it.

 Remote branches are different from local
branches even if they have the same name!

 You may now diff it with your working copy to
see how they differ, and then merge them if you
like.

 Git pull does the fetch and merge together.

Different remotes and branches

Here there are two
remotes:
origin and sitas-repo

The local repo and origin
are in sync, i.e. their
master branch is the same.
sitas-repo/master is at a
different commit.

You would want to pull
sitas-repo.

Image source: [1] http://sitaramc.github.com/gcs/

Your own remote repository

 ”remote” can refer to any storage location
where a repository can be created. It could be a
folder on a backup drive.

 You can create an empty shared repo on a
shared folder on a Linux server:

git init --bare --shared
 This is what Github gives when creating a new repo

 You can give certain users read/write
permissions to the folder.

 They may set up a remote or clone that location
using the format user@server:/path/to/shared/repo

With tools

 You may set up a git server with very fine tuned
access controls using a tool like Gitolite or
Gitosis

References

 [1] http://sitaramc.github.com/gcs/

Disclaimer:
Some assertions made in this presentation are
based on my own experience. So look up
definitions etc. from a more definitive place.
-Rohit

http://sitaramc.github.com/gcs/

The End

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

